Two articles concerning current “nanoarchitecture” strategies for improving electrode efficiency

A novel nano-architecture for ZnO thin films on (100) Si, GaAs and InP single crystal wafers by L-MBE as value in nano-robotic (machining) device fabrication efforts

K. Ramamoorthy a, C. Sanjeeviraja a, M. Jayachandran b, K. Sankaranarayanan c, V. Ganesan d, Pankaj Misra e and L.M. Kukreja e

Department of Physics, Alagappa University, Karaikudi-630 003, TN, India a

ECMS Division, Central Electro Chemical Research Institute, Karaikudi-630 006, TN, India b

Crystal Research Centre, Alagappa University, Karaikudi-630 003, TN, India c

Inter-University Consortium for DAE Facilities, Government of India, Indore-452 017, M.P, India d

Thin Film Laboratory, Centre for Advanced Technology, Department of Atomic Energy, Government of India, Indore-452 013, M.P, India e

Summary: A pulsating molecular laser beam was used to deposit zinc oxide thin films on SIS semiconductor wafers for multi-junction solar cells. The film growth was studied on various substrates such as glass, Silicon, Gallium Arsenide, and Indium Phosphide, varying the temperature also from room temperature to 300 °C. Electron Microscopes and Atomic Force Microscopes showed improvements of the crystalline and surface nature of ZnO thin films with respect to substrate temperatures and substrates. Better surface architecture was observed at the higher temperatures. Also, the architecture was better on InP than on Si and GaAs.

http://www.sciencedirect.com/science?

2. Effects of Electrode Structure on Photoelectrochemical Properties of ZnO Electrodes Modified with Porphyrin_Fullerene Composite Layers with an Intervening Fullerene Monolayer

Hironobu Hayashi, Aiko Kirai, Tomokazu Umeayama, Yoshihiro Matano, Patcharee Charoensirithavorn, Takashi Sagawa, Susumu Yoshikawa, Nikolai V. Tkachenko, Helge Lemmetyinen, and Hiroshi Imahori

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere, Finland

Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan

Photocurrent generation was improved by first covering the ZnO electrodes with fullerene acid molecules in a monolayer, then spin coating the modified surface with zinc porphyrin and fullerene acid molecules. The greater photocurrent generation efficiency in charge separation seems to be due to the added fullerene monolayer. The cell’s performance was optimized by altering the length and diameter of the ZnO nanorods and the density of the ZnO nanorod array. This study will provide valuable information on the design of electrode structures and the donor-acceptor combination so as to improve the cell performance in dye-sensitized bulk heterojunction solar cells.