What is the atom economy of this reaction?

Reaction 1. Traditional Bromination

Atom economy = (MW _{desired product} / Σ MW _{reagents}) x 100%

What is the atom economy of this reaction?

Reaction 2. Pyridinium tribromide

Atom economy = (MW _{desired product} / Σ MW _{reagents}) x 100%

What is the atom economy of this reaction?

Reaction 3. HBr/H₂O₂ + 2 HBr + H₂O₂ trans-stilbene $C_{14}H_{12} = 180.25$ HBr = 80.92 $H_{2}O_{2} = 34.02$ EtOH $H_{2}O_{2} = 34.02$ $H_{2}O_{2} = 34.02$ $H_{2}O_{2} = 34.02$ $H_{2}O_{3} = 340.05$ $H_{2}O_{4} = 18.01$

Atom economy = (MW _{desired product} /
$$\Sigma$$
 MW _{reagents}) x 100%

What is the effective mass yield of this reaction?

Reaction 1. Traditional Bromination

+ Br₂

+ Br₂

$$CH_2CI_2$$
 Br
 Br

Formula

Name	Weight	eq	mmol	wt / vol
trans-stilbene	180.25	1.00	10.0	1.80 g
bromine	159.81	1.05	10.5	1.68 g

Assume 90% yield

Effective mass yield = (mass desired product / Σ mass reagents) x 100%

What is the effective mass yield of this reaction?

Reaction 2. Pyridinium tribromide

Formula					
Name	Weight	eq	mmol	wt / vol	
trans-stilbene	180.25	1.00	10.0	1.80 g	
pyridinium tribromide (90%)	319.82	1.13	11.3	3.61 g	

Assume 90% yield

Effective mass yield = (mass desired product / Σ mass reagents) x 100%

What is the effective mass yield of this reaction?

Reaction 3. HBr/H₂O₂

+ 2 HBr + H₂O₂

trans-stilbene

$$C_{14}H_{12} = 180.25$$

HBr = 80.92

 $H_{2}O_{2} = 34.02$

EtOH

1,2-dibromo-1,2-diphenylethane

 $C_{14}H_{12}Br_{2} = 340.05$
 $C_{14}H_{12}Br_{2} = 340.05$
 $C_{14}H_{12}Br_{2} = 340.05$

Formula

Name	Weight	density	eq	mmol	wt / vol
trans-stilbene	180.25		1.00	10.0	1.80 g
hydrobromic acid 48%	80.92	1.49	2.80	28.0	3.18 mL
hydrogen peroxide 30%	34.02	1.11	2.06	20.6	2.12 mL

Assume 90% yield

Effective mass yield = (mass desired product / Σ mass reagents) x 100%

What is the solvent?

Reaction 1. Traditional Bromination

+ Br₂

+ Br₂

$$CH_2Cl_2$$
 Br
 Br

Formula

Name	Weight	eq	mmol	wt / vol	
trans-stilbene	180.25	1.00	10.0	1.80 g	
bromine	159.81	1.05	10.5	1.68 g	

Is CH₂Cl₂ benign?

What is the mass of CH₂Cl₂?

Assume that the concentration of stilbene in $\mathrm{CH_2Cl_2}$ is 0.25 M Assume 90% yield

Effective mass yield = (mass desired product / Σ mass reagents & non-benign solvent) x 100%